Triangularization properties of power linear maps and the Structural Conjecture
نویسندگان
چکیده
In this paper, we discuss several additional properties a power linear Keller map may have. The Structural Conjecture by Drużkowski in [Dru] asserts that two such properties are equivalent, but we show that one of this properties is stronger than the other. We even show that the property of linear triangularizability is strictly in between. Furthermore, we give some positive results for small dimensions and small Jacobian ranks.
منابع مشابه
A short proof of the maximum conjecture in CR dimension one
In this paper and by means of the extant results in the Tanaka theory, we present a very short proof in the specific case of CR dimension one for Beloshapka's maximum conjecture. Accordingly, we prove that each totally nondegenerate model of CR dimension one and length >= 3 has rigidity. As a result, we observe that the group of CR automorphisms associated with each of such models contains onl...
متن کاملA class of certain properties of approximately n-multiplicative maps between locally multiplicatively convex algebras
We extend the notion of approximately multiplicative to approximately n-multiplicative maps between locally multiplicatively convex algebras and study some properties of these maps. We prove that every approximately n-multiplicative linear functional on a functionally continuous locally multiplicatively convex algebra is continuous. We also study the relationship between approximately mu...
متن کاملTriangularization over finite-dimensional division rings using the reduced trace
In this paper we study triangularization of collections of matrices whose entries come from a finite-dimensional division ring. First, we give a generalization of Guralnick's theorem to the case of finite-dimensional division rings and then we show that in this case the reduced trace function is a suitable alternative for trace function by presenting two triangularization results. The first one...
متن کاملOn Preserving Properties of Linear Maps on $C^{*}$-algebras
Let $A$ and $B$ be two unital $C^{*}$-algebras and $varphi:A rightarrow B$ be a linear map. In this paper, we investigate the structure of linear maps between two $C^{*}$-algebras that preserve a certain property or relation. In particular, we show that if $varphi$ is unital, $B$ is commutative and $V(varphi(a)^{*}varphi(b))subseteq V(a^{*}b)$ for all $a,bin A$, then $varphi$ is a $*$-homomorph...
متن کاملThe Jacobian Conjecture: linear triangularization for homogeneous polynomial maps in dimension three
Let k be a field of characteristic zero and F : k → k a polynomial map of the form F = x + H, where H is homogeneous of degree d ≥ 2. We show that the Jacobian Conjecture is true for such mappings. More precisely, we show that if JH is nilpotent there exists an invertible linear map T such that T−1HT = (0, h2(x1), h3(x1, x2)), where the hi are homogeneous of degree d. As a consequence of this r...
متن کامل